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Abstract

In this paper we introduce a new algebraic structure of a Jordan type
and we show several examples. This new structure called quasi-Jordan
algebras appear in the study of the product

x / y :=
1

2
(x a y + y ` x),

where x, y are elements in a dialgrebra (D,a,`). The quasi-Jordan alge-
bras are a generalization of the Jordan algebras for which the commutative
law is changed by a quasi-commutative identity and a special form of the
Jordan identity is retained. The quasi-Jordan algebras are not contained
in the generalizations of Jordan algebras, in particular with respect to
noncommutative Jordan algebras. We show a few results about the re-
lationship between Jordan algebras and quasi-Jordan algebras. Also, we
compare quasi-Jordan algebras with some structures. In particular, we
found a special relation with the Leibniz algebras. We attach a quasi-
Jordan algebra Lx to any ad-nilpotent element x with an index of nilpo-
tence at most 3 in a Leibniz algebra L. In this part we extended the results
of Kostrikin and Benkart-Isaacs about nilpotent elements to Leibniz alge-
bras and we show that Lx is nondegenerated if L is nondegenerated.
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Introduction

In algebra there are three strongly related classical algebras: Associa-
tive, Jordan and Lie algebras. It is known that any associative algebra
A becomes a Jordan algebra A+ under the symmetric product (Jordan
product) x • y := 1

2
(xy + yx) and becomes a Lie algebra under the skew-

symmetric product (Lie bracket) [x, y] := xy − yx. On the other hand
we know from the works of J. Tits, I. Kantor and M. Koecher that the
Jordan algebras are imbedded in the Lie algebras (see [9], [11] and [16]).
In particular, Koecher showed that for a Jordan algebra J there is a Lie
algebra L(J) such that J is a subspace of L(J) and the product of J can
be expressed in terms of the bracket in the Lie algebra L(J) (see [11]).

It is known that the universal enveloping algebra of a Lie algebra has
the structure of an associative algebra. More recently, J. L. Loday intro-
duced the notion of Leibniz algebras (see [12]), which is a generalization
of the Lie algebras where the skew-symmetric of the bracket is dropped
and the Jacobi identity is changed by the Leibniz identity. Loday also
showed that the relationship between Lie algebras and associative alge-
bras translate into an analogous relationship between Leibniz algebras and
the so-called Dialgebras (see [13]) which are a generalization of associative
algebras possessing two operations. In particular Loday showed that any
dialgebra (D,a,`) becomes a Leibniz algebra DLeib under the Leibniz
bracket [x, y] := x a y − y ` x and the universal enveloping algebra of a
Leibniz algebra has the structure of a Dialgebra (see [13] or [14]).

Our aim is to discover a new generalization of the Jordan algebras.
This new structure, called quasi-Jordan algebra, is noncommutative in
general and satisfys a special Jordan identity. The quasi-Jordan algebras
appear in the study of the product

x / y :=
1

2
(x a y + y ` x),

where x and y are elements in a dialgebra D over a field K of the char-
acteristic different from 2. We study other products defined over Jordan
bimodules and the vector space of linear transformations gl(V ), where V
is a vector space.

From this study, we obtain the fundamental axioms for the quasi-
Jordan algebras. This definition is the following

Definition. A quasi-Jordan algebra is a vector space = over a field
K with a characteristic different from 2 equipped with a bilinear product
/ : =× = → = that satisfys

x / (y / z) = x / (z / y) (right commutativity) (QJ1)

(y / x) / x2 = (y / x2) / x (right Jordan identity) (QJ2)

for all x, y, z ∈ =, where x2 = x / x.

The quasi-Jordan algebras are a different generalization of the Jordan
algebra, in particular these algebras are not equivalent to noncommutative
Jordan algebras. On the other hand, we show that all Jordan elements in
a Leibniz algebras are associated to with quasi-Jordan algebras.
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In sections one, two and three we study different constructions of al-
gebraic structures of the Jordan type. From these sections we obtain
the definition of quasi-Jordan algebras in a constructive form. In the first
section we work with dialgebras and obtain the initial axioms of the quasi-
Jordan algebras. In the second section we present two algebraic structures
of the Jordan type obtained from Jordan algebras and Jordan bimodules.
In the third section we construct an algebraic structure defined by a vec-
tor space and its Jordan algebra of linear transformations. In this part
we obtain the principal axioms of the quasi-Jordan algebras.

In the fourth section we introduce the definition of quasi-Jordan alge-
bras and present other examples. In this section we study the relationship
between quasi-Jordan algebras and noncommutative Jordan algebras.

In the last section we present the principal results of this paper. In
this section we obtain new results about the existence of ad-nilpotent
elements in Leibniz algebras. We extend well known results of Kostrikin
and Benkart-Isaacs in the context of Leibniz algebras. We define the
concept of a Jordan element in Leibniz algebras and we show how it
is possible to attach a quasi-Jordan algebra to any Jordan element of
a Leibniz algebra (over a field of a characteristic different from 2 and
3). This result generalizes a construction of the Jordan algebras of a Lie
algebras from A. Fernández, E. Garćıa and M. Gómez (see [6]).

The fundamental problem that we are studying in a future paper is
the imbedding of quasi-Jordan algebras into Leibniz algebras.

1 Algebraic structures of Jordan type gen-
erate by dialgebras

Around 1990, J. L. Loday introduced the notions of Leibniz algebras and
diassociative algebras (dialgebras) (see [13]). The Leibniz algebras are a
generalization of Lie algebras where the skew-symmetric of the bracket is
suppressed and the Jacobi identity is changed by the Leibniz identity.

Definition 1 A Leibniz algebra over a field K is a K-vector space L
equipped with a binary operation, called Leibniz bracket, [·, ·] : L× L → L
which satisfies the Leibniz identity

[x, [y, z]] = [[x, y], z]− [[x, z], y] , for all x, y, z ∈ L (L)

If the bracket is skew-symmetric, then L is a Lie algebra. Therefore Lie
algebras are particular cases of Leibniz algebras.

Example 2 Let L be a Lie algebra and let M be a L-module with action
M × L → M , (m, x) 7→ mx. Let f : M → L be a L-equivariant linear
map, this is

f(mx) = [f(m), x] , for all m ∈ M and x ∈ L,

then one can put a Leibniz structure on M as follows

[m, n]′ := mf(n) , for all m, n ∈ M.
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Additionally, the map f defines a homomorphism between Leibniz algebras,
since

f([m, n]′) = f(mf(n)) = [f(m), f(n)]

Example 3 Let (A, d) be a differential associative algebra. So, by hy-
pothesis, d(ab) = da b + a db and d2 = 0. Define the bracket on A by the
formula

[a, b] := a db− db a

The vector space A equipped with this bracket is a Leibniz algebra.

It follows from the Leibniz identity (L) that in any Leibniz algebra we
have

[x, [y, y]] = 0, [x, [y, z]] + [x, [z, y]] = 0.

Let L be a Leibniz algebra. Let Lann be the subspace of L spanned
by elements of the form [x, x], x ∈ L. For any x, y ∈ L we have

ann(x, y) = [x, y] + [y, x] ∈ Lann(L).

If we defined
Zr(L) = {z ∈ L|[x, z] = 0, ∀x ∈ L},

we obtain that

1. Lann ⊂ Zr(L).

2. Lann and Zr(L) are two-side ideals of L.

3. [Zr(L), L] ⊂ Lann.

Quotienting the Leibniz algebra L by the ideal Lann(L) gives a Lie
algebra denoted by LLie. Moreover, the ideal Lann(L) is the smallest
two-sided ideal of L such that L/Lann(L) is a Lie algebra. The quo-
tient map π : L → LLie is a homomorphism of Leibniz algebras, this is
π([x, y]) = [π(x), π(y)]. Besides π is universal with respect to all homo-
morphisms from L to another Lie algebra L′, this is equivalent to the
following diagram commute

L
π→ LLie

↘ ↓
L′

Since Lann(L) ⊂ Zr(L), we see that

LLie := L/Zr(L)

is also a Lie algebra.
The Leibniz algebras are in fact right Leibniz algebras. For the oppo-

site structure (left Leibniz algebras), that is [x, y]′ = [y, x], the left Leibniz
identity is

[[x, y]′, z]′ = [y, [x, z]′]′ − [x, [y, z]′]′. (L’)

The notion of dialgebras is a generalization of associative algebras,
with two operations, which gives rise to Leibniz algebras instead of Lie
algebras.
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Definition 4 A dialgebra over a field K is a K-vector space D equipped
with two associative products

a: D ×D → D

`: D ×D → D

satisfying the identities:

x a (y a z) = x a (y ` z) (D1)

(x ` y) a z = x ` (y a z) (D2)

(x ` y) ` z = (x a y) ` z (D3)

Observe that the analogue of formula (D2), but with the product
symbols pointing outward, is not valid in general in Dialgebras: (x a y) `
z 6= x a (y ` z).

A morphism of dialgebras from D to D′ is a linear map f : D → D′

such that

f(x a y) = f(x) a f(y) and f(x ` y) = f(x) ` f(y),

for all x, y in D.
A bar-unit in D is an element e in D such that

x a e = x = e ` x , for all x ∈ D.

A bar-unit needs not to be unique. The subset of bar-units of D is called
its Halo. A unital dialgebra is a dialgebra with a specified bar-unit e.
The problem of adding a unit-bar to dialgebras remains open.

Observe that if a dialgebra has a unit ε, which satisfies ε a x = x for
any x ∈ D, then a = ` and D is an associative algebra with unit ε.

Example 5 If A is an associative algebra, then the formula x a y = xy =
x ` y define a structure of dialgebra on A

Example 6 If (A, d) is a differential associative algebra, then the formu-
las x a y = x dy and x ` y = dx y define a structure of dialgebra on
A.

Example 7 Let V be a vector space and fix ϕ ∈ V ′ (the algebraic dual),
then one can define a dialgebra structure on V by setting x a y = ϕ(y)x
and x ` y = ϕ(x)y, denoted by Vϕ. If ϕ 6= 0, then Vϕ is a dialgebra with
non-trivial bar-units. Moreover, its halo is an affine space modeled after
the subspace Kerϕ.

If D is a dialgebra and we define the bracket [·, ·] : D ×D → D by

[x, y] := x a y − y ` x , for all x, y ∈ D,

then (D, [·, ·]) is a Leibniz algebra. Moreover, Loday show that the fol-
lowing diagram is commutative

Dias
−→ Leib

↑ ↑
As

−→ Lie

5



where Dias, As, Lie and Leib are denoted, respectively, as the categories
of dialgebras, associative, Lie and Leibniz algebras (see [13]).

If we translate the quasi-multiplication (Jordan product) to the dial-
gebra framework, we obtain a new algebraic structure of a Jordan type.
Let D be a dialgebra over a field K of the characteristic different from 2.
We define the product / : D ×D → D by

x / y :=
1

2
(x a y + y ` x) , for all x, y ∈ D. (/ 1)

A few calculus show that the product / satisfys the identities

x / (y / z) = x / (z / y) (QJ1)

(y / x) / x2 = (y / x2) / x (QJ2)

x2 / (x / y) = x / (x2 / y), (QJ3)

but the product / is noncommutative in general.

Remark 8 The other Jordan type identities are not satisfied by the prod-
uct /, besides the identity x2 / (y / x) = x / (y / x2), but this identity is
obvious by (QJ1) and (QJ3).

Note 9 F. Chapoton introduced the notion of commutative dialgebra. A
dialgebra D is commutative if the Leibniz algebra DLeib is zero, this is if
x a y = y ` x, for all x, y in D (see [4]). If we define x◦y := x a y, for all
x, y in D, then the algebra (D, ◦) is associative and satisfys the identity

x ◦ (y ◦ z) = x ◦ (z ◦ y) , for all x, y, z ∈ D.

Therefore the algebra (D, ◦) satisfies the identities (QJ1), (QJ2) and
(QJ3). These algebras are called Perm algebras.

If D is a unital dialgebra, with a specific bar-unit e, we have that
x / e = x, for all x in D. This implies that e is a right unit for the algebra
(D, /). In this case we have for (QJ2) and (QJ3) that

x2 / x = x / x2 (1)

and
x2 / x2 = (x2 / x) / x, (2)

for all x, y in D.
Then all algebras (D, /) that satisfy the identities (QJ1), (QJ2) and

(QJ3) with right unit e defined over a field of characteristic zero are power-
associative. If D is a dialgebra without a bar-unit, then the product /
only satisfies the (QJ2) identity. To show that a nonassociative algebra is
power-associative the previous identities are necessary conditions. In the
following table we show the classical identities in non-associative algebras
and we indicate which are true with respect to a product / over dialgebras:
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Classical identities True Quasi-identities True

x / y = y / x Not x / (y / z) = x / (z / y) Yes
x / (y / x) = (x / y) / x Not x / (y / (z / y)) = x / ((y / z) / y) Yes

x / (x / y) = x2 / y Not x / (y / (y / z)) = x / (y2 / z) Not
(y / x) / x = y / x2 Not x / ((y / z) / z) = x / (y / z2) Not

x2 / x = x / x2 Not x / (y / y2) = x / (y2 / y) Yes
x / (y / z) = (x / y) / z Not x / ((y / z) / w) = x / (y / (z / w)) Not

Table 1

Remark 10 If we review the definition of Leibniz algebra and we compare
with Lie algebras, we see that Lie algebras satisfy the anti-symmetric iden-
tity [x, y] = −[y, x], but this is not true in Leibniz algebras. The Leibniz
algebras satisfy the identity

[x, [y, z]] = [x,−[z, y]] (3)

and we call this identity the quasi-anti-symmetry identity. The Leib-
niz identity implies the quasi-skew-symmetric identity [x, [y, y]] = 0.
These identities (quasi-anti and quasi-skew symmetric) are similar to
quasi-commutativity identity (QJ1).

Summary 11 In this section we find a new algebraic structure of the
Jordan type. This structure is a generalization of Jordan algebras and it is
noncommutative. Additionally, the product / over a dialgebra D satisfies
for all x, y ∈ D

x / (y / x2) + 2(x2 / y) / x = (x / y) / x2 + 2x2 / (y / x) (QJ4)

If we introduce the associator operator (x, y, z) = (x / y) / z − x / (y / z),
then the identity (QJ4) is equivalent to

(x, y, x2)− 2(x2, y, x) = 0 (QJ4’)

The identity (QJ4′) is similar to identity

(x, y, x2) + 2(x2, y, x) = 0 (4)

The last identity is satisfied in Jordan bimodules, for this we are going
to study algebraic structures generated by Jordan bimodules.

2 The Jordan bimodules case

In this section we show two new constructions of algebraic Jordan struc-
tures generated by Jordan bimodules. First, we introduce the definitions
of Jordan algebra and Jordan Bimodule.

Definition 12 Let J be a vector space over a field K with characteristic
different from 2. We say that J is a Jordan algebra if over J is defined
a product • : J × J → J such that it satisfies the identities

a • b = b • a (5)
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and
a2 • (b • a) = (a2 • b) • a , (6)

for all a, b ∈ J , where a2 = a • a.

Definition 13 Let J be a Jordan algebra and let M be a vector space
over the same field as J . Then M is a Jordan Bimodule for J in case
there are two bilinear compositions (m, a) 7→ ma and (m, a) 7→ am, for
all m ∈ M and a ∈ J , satisfying

ma = am (7)

and
(a2, m, a) = (a2, b, m) + 2(ma, b, a) = 0 , (8)

for all m ∈ M and a, b ∈ J , when (a, b, c) denotes the associator.

Let J be a Jordan algebra and let M be a Jordan bimodule. A linear
map f : M → J is called J-equivariant over M if f(am) = af(m), for
all m ∈ M and a ∈ J . If f is a J-equivariant map over M , then we define
the product / : M ×M → M by

m / n = f(n)m , for all m, n ∈ M (/ 2)

The product / satisfies the following identities

m / (n / s) = m / (s / n) (QJ1)

(n / m) / m2 = (n / m2) / m (QJ2)

m / (n / m2) + 2(m2 / n) / m = (m / n) / m2 + 2m2 / (n / m) , (QJ4)

for all m, n, s ∈ M , but it is not commutative. The other Jordan type
identities are not satisfied by the product /.

If we compare the products / defined by (/ 1) and (/ 2), these products
satisfy the identities (QJ1), (QJ2) and (QJ4).

Another way to define a product over Jordan algebras and Jordan
bimodules is the following. Over the vector space J × M , where J is a
Jordan algebra and M is a Jordan bimodule over J , we define the product
/ by

(a, m) / (b, n) = (ab, mb) , for all a, b ∈ J and m, n ∈ M. (/ 3)

For simplicity we write (a, m)b = (ab, mb). The product defined by
(/ 3) satisfies the same conditions as the product defined by (/ 2) and it
is noncommutative. If we define the projection map πJ : J ×M → J by
πJ(a, m) = a, then πJ((am)b) = ab = aπJ(b, n) and this is equivalent to

πJ((a, m) / (b, n)) = πJ(a, m) • πJ(b, n) ,

for all a, b ∈ J and m, n ∈ M .
We have that J ×M is a Jordan bimodule over J with bilinear com-

positions defined by a(b, n) = (ab, an) and (b, m)a = (ba, ma). The map
πJ defined over J × (J ×M) is J-equivariant since

πJ((a, m)b) = πJ(a, m) • b , for all b ∈ J and (a, m) ∈ J ×M.

Summary 14 The products defined by (/ 1), (/ 2) and (/ 3) are non-
commutative and satisfy the identities (QJ1), (QJ2) and (QJ4). The
other Jordan type identities, different from (QJ2), are not satisfied by the
products defined in this section.
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3 The gl+(V ) case

In this section we are going to construct an algebraic structure of a Jor-
dan type with respect to a vector space and its Jordan algebra of linear
transformations.

Let V be a vector space over a field K with a characteristic different
from 2 and let gl+(V ) be a Jordan algebra of linear transformations over
V with a product defined by

A •B =
1

2
(AB + BA),

where AB denotes the composition of the maps A and B. We consider
the vector space gl+(V )×V and we define the product / : (gl+(V )×V )×
(gl+(V )× V ) → gl+(V )× V by

(A, u) / (B, v) = (A •B, Bu), (/ 4)

for all A, B ∈ gl(V ) and u, v ∈ V . This product satisfies the identities

(A, u) / ((B, v) / (C, w)) = (A, u) / ((C, w) / (B, v)) (QJ1)

and

((B, v) / (A, u)) / (A, u)2 = ((B, v) / (A, u)2) / (A, u) , (QJ2)

for all A, B ∈ gl+(V ) and u, v ∈ V , where (A, u)2 = (A, u) / (A, u).
This product does not satisfy other Jordan type identities and does

not satisfy the identity (QJ4), but it satisfies the identities

(A, u)2 / (A, u) = (A, u) / (A, u)2 (9)

and
(A, u) / (Id, v) = (A, u), (10)

where Id denotes the identity map over V . The last identity shows that
(Id, v) is a right unit for all v ∈ V , but (Id, v) is not a left unit with
respect to the product /. If the field K is the characteristic zero, then
gl+(V )× V is a power-associative algebra.

Summary 15 When we review the products / defined by (/ 1), (/ 2), (/
3) and (/ 4) we find in common the identities (QJ1) and (QJ2). From
these identities we are going to propose a new algebraic structure of a
Jordan type in the following section.

4 Quasi-Jordan algebras

In this section we introduce a new algebraic structure of a Jordan type and
we study the relations with Jordan algebras and noncommutative Jordan
algebras.

According to the previous summaries (11, 14 and 15), we introduce
the following algebraic structure.
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Definition 16 A quasi-Jordan algebra is a vector space = over a field
K with a characteristic different from 2 equipped with a bilinear product
/ : =× = → = that satisfies

x / (y / z) = x / (z / y) (right commutativity) (QJ1)

(y / x) / x2 = (y / x2) / x (right Jordan identity), (QJ2)

for all x, y, z ∈ =, where x2 = x / x.

In terms of the left and right multiplicative maps Lx and Rx, defined
for x ∈ = by Lx(y) = x / y and Rx(y) = y / x, for all y ∈ =, the identities
(QJ1) and (QJ2) are equivalent to

LxLy = LxRy (QJ1*)

RxRx2 = Rx2Rx (QJ2*)

There is an analogous structure if we define a product . : =× = → =
by x . y := y / x, for all x, y ∈ =. This product satisfies the identities

(x . y) . z = (y . x) . z (left commutativity) (QJ1’)

x2 . (x . y) = x . (x2 . y) , (left Jordan identity) (QJ2’)

for all x, y ∈ =, where x2 = x . x. In the last three sections we define the
product . by

1. x . y = 1
2
(x ` y + y a x)

2. m . n = f(m)n

3. (A, u) . (B, v) = (A •B, Av).

These products satisfy the identities (QJ1′) and (QJ2′). Then we have
two quasi-Jordan algebras, the right and the left structures. We will only
consider the right quasi-Jordan algebras.

Note 17 The Jordan and Perm algebras are obvious examples of quasi-
Jordan algebras.

A right unit in a quasi-Jordan algebra = is an element e in = such
that x / e = x, for all x ∈ =.

Let = be a quasi-Jordan algebra, if there is an element ε in = such
that ε /x = x then = is a classical Jordan algebra and ε is a unit. For this
reason we only consider right units over quasi-Jordan algebras.

It is possible to attach a unit to any Jordan algebra, but in quasi-
Jordan algebras the problem of attaching a right unit is a open problem.
Additionally, the right units in quasi-Jordan algebras are not unique (see
example 18).

We denote by Ur(=) the set of all right units of a quasi-Jordan algebra
=. A right unital quasi-Jordan algebra is a quasi-Jordan algebra with
a specified right unit e.

Example 18 Let V be a vector space and fix ϕ ∈ V ′ with ϕ 6= 0. We
define the product / : V × V → V by x / y = ϕ(y)x, for all x, y ∈ V .
Then (V, ϕ) is a quasi-Jordan algebra and all elements x in V such that
ϕ(x) 6= 0 define a right unit x/ϕ(x).
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Example 19 Let V be a 2-dimensional vector space with base {e1, e2}.
If we define the product / : V × V → V with respect to e1 and e2 by
ei / ej = ei, for i = 1, 2, and extend the product to V for linearity, we
have that (V, /) is a noncommutative quasi-Jordan algebra.

Now, if we consider the symmetric product x • y = x / y + y / x, for all
x, y ∈ V , then (V, •) is a Jordan algebra.

Example 20 Let J be a Jordan algebra and let M be a Jordan bimodule
such that the identity (a, b, am) = 0 is not satisfied. Then the quasi-
Jordan algebra (J × M, /), with a product / defined by (/ 3), is not a
Jordan algebra with respect to symmetric product

(a, m) • (b, n) =
1

2
((a, m) / (b, n) + (b, n) / (a, m))

In this point it is important to remember the definition of a noncom-
mutative Jordan algebra and see then relation with quasi-Jordan algebras.

A noncommutative Jordan algebra is a vector space Jn over a
field K of a characteristic different from 2 equipped with a product · :
Jn × Jn → Jn satisfying the flexible law and the Jordan identity, this is

x · (y · x) = (x · y) · x (11)

x2 · (y · x) = (x2 · y) · x , (12)

for all x, y ∈ Jn. The following lemma gives necessary and sufficient
conditions such that an algebra can be a noncommutative Jordan algebra
(see [3]).

Lemma 21 An algebra A is a noncommutative Jordan algebra if and
only if it is flexible (satisfys the flexible law) and the corresponding plus-
algebra A+ is a Jordan algebra (A+ = (A, •) is a Jordan algebra, with
x • y = 1

2
(x · y + y · x)).

Remark 22 The previous lemma and the last example imply that the
quasi-Jordan algebras are not noncommutative Jordan algebras. Moreover,
the noncommutative Jordan algebras are not quasi-Jordan algebras. In
effect, let A be an associative and noncommutative algebra over a field K
(characteristic 6= 2) and let a ∈ K with a 6= 1

2
. We define a new product

on A as follows
x •a y = axy + (1− a)yx

and we denote the resulting algebra by Aa. The algebra Aa is a noncom-
mutative Jordan algebra, but it is not a quasi-Jordan algebra.

The previous remark implies that the quasi-Jordan algebras are a dif-
ferent generalization of the Jordan algebras, besides the noncommutative
Jordan algebras and their generalizations.

Remark 23 Let = be a quasi-Jordan algebra and we define the Lie bracket
[·, ·] : = × = → = by [x, y] = x / y − y / x. Then this bracket is skew-
symmetric, but does not satisfy the Leibniz and Jacobi identities. This
implies that (=, [·, ·]) is not a Leibniz algebra. If we define the associator
(x, y, z) := x/ (y / z)− (x/y)/ z, then (=, [·, ·], (·, ·, ·)) is an Akivis algebra
(see [3], section 8).
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Following Kinyon and Weinstein’s ideas (see [10]), in the rest of this
section we will obtain Jordan algebras from quasi-Jordan algebras and
we show an universal property about homomorphisms from quasi-Jordan
algebras to Jordan algebras.

It follows from the right commutativity (QJ1) that in any quasi-Jordan
algebra we have

x / (y / z − z / y) = 0.

Let = be a quasi-Jordan algebra. A subspace I ⊂ = is called left (resp.
right) ideal if for any a ∈ I and x ∈ = we have a / x ∈ I (resp. x / a ∈ I).
If I is both left and right ideal, then I is called two-side ideal. For a
quasi-Jordan algebra = we put

Zr(=) = {z ∈ =|x / z = 0, ∀x ∈ =}.
We denote by =ann the subspace of = spanned by elements of the form

x / y − y / x, with x, y ∈ =. Clearly we have

=ann ⊂ Zr(=).

Since Zr(=) / = ⊂ =ann, we have that =ann and Zr(=) are two-side
ideals of =.

Let (=, /) be a quasi-Jordan algebra. If we consider the quotient al-
gebra =Jor := =/=ann we see that =Jor is a Jordan algebra. Moreover,
the ideal =ann is the smallest two-sided ideal in = such that =/=ann is
a Jordan algebra. In effect, let I be any two-sided ideal of = such that
=/I is a Jordan algebra, then x / y − y / x + I = I and this implies that
=ann ⊂ I. The quotient map π : = → =Jor is a homomorphism of quasi-
Jordan algebras, this is π(x/y) = π(x) /π(y). Besides π is universal with
respect to all homomorphisms from = to another Jordan algebra J , this
is equivalent to the following diagram commute

= π→ =Jor

↘ ↓
J

Also, if = is a right unital quasi-Jordan algebra, with a specific right
unit e, we have that

=ann = {x ∈ =|e / x = 0}
and

Ur(=) = {x + e|x ∈ =ann}
In future works we will search for find more specific relations between

Jordan algebras (commutative and noncommutative) and quasi-Jordan
algebras.

Furthermore, we will search for relations between quasi-Jordan and
Lie algebras.
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5 Quasi-Jordan algebras generated by Jor-
dan elements in Leibniz algebras

In this section we show that it is possible to attach a quasi-Jordan algebra
to any Jordan element x of a Leibniz algebra L. We define a product in L
by a / b := 1

2
[a, [b, x]] and divide the nonassociative algebra L(x) := (L, /)

by the ideal KerL(x) := {a ∈ L|[[a, x], x] = 0}. Then Lx := L(x)/KerL(x)
turns out to be a quasi-Jordan algebra.

This construction generalizes the results obtained by Fernández, Garćıa
and Gómez (see [6] Theorem 2.4) in the context of Leibniz algebras and
quasi-Jordan algebras.

First, we generalize the results of Kostrikin and Benkart-Isaacs about
ad-nilpotent elements in Lie algebras to ad-nilpotent elements in Leibniz
algebras. In particular, we obtain the following results:

1. Any nonzero ad-nilpotent element in a Leibniz algebra gives rise to
a nonzero Jordan element.

2. Any nonzero finite dimensional Leibniz algebra over an algebraically
closed field of an arbitrary characteristic necessarily contains a nonzero
ad-nilpotent element, and therefore a nonzero Jordan element.

We begin by introducing the definition of an adjoint map in Leibniz
algebras and we show a few properties.

Definition 24 Let L be a Leibniz algebra. For all x ∈ L, we define the
adjoint map adx : L → L by adxy = [y, x], for all y ∈ L. Additionally, the
Leibniz identity implies that adx is a derivation over L, since adx[y, z] =
[adxy, z] + [y, adxz], for all y, z ∈ L.

Remark 25 The map ad : L → gl(L), x 7→ adx, where gl(L) is the Lie
algebra of linear maps over L with a Lie bracket [T, S] = TS − ST , it is
an antihomomorphism of Leibniz algebras, this is

ad[x,y] = [ady, adx] , for all x, y ∈ L (13)

The set ad(L) = {adx|x ∈ L} with the bracket defined by [adx, ady] :=
adxady − adyadx turns out to be a Lie algebra, in particular it is a Lie
subalgebra of gl(L).

Notation 26 We will use capital letters to denote the adjoint maps (the
elements of ad(L)): X = adx, Y = ady, etcetera. In this notation the last
identity has the form

ad[x,y] = [Y, X] (14)

Definition 27 Let L be a Leibniz algebra and let x be an element in L.
We say that x is an ad-nilpotent element if there is a positive integer
m such that adm

x = 0. For any ad-nilpotent element x ∈ L we define the
ad-nilpotence index of x by the positive integer m such that adm

x = 0
and adm−1

x 6= 0.

The elements in Leibniz algebra that satisfy the following definition
are the central objects in the construction of quasi-Jordan algebras from
Leibniz algebras.
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Definition 28 We say that an element x in a Leibniz algebra L is a
Jordan element if x is an ad-nilpotent element of index at most 3.

The previous definition is a generalization of the Jordan elements over
Lie algebras.

Example 29 A natural example of Jordan elements are the zero-square
elements in a dialgebra. Let D be a dialgebra and let L be the Leibniz
algebra DLeib. For any x, y ∈ L, we have:

1. ad2
x(y) = y a (x a x)− 2(x ` y) a x + (x ` x) ` y

2. ad3
x(y) = y a x3

a − 3(x ` y) a (x a x) + 3(x ` x) ` (y a x) + x3
` a y,

where x3
a = x a (x a x) and x3

` = (x ` x) ` x. Thus, if x is an element
in D such that x a x = 0 or x ` x = 0 then adx(y) = 0, since (x ` y) a
(x a x) = (x ` y) a (x ` x) and (x ` x) ` (y a x) = (x a x) ` (y a x).
This implies that x is a Jordan element in the Leibniz algebra generated
by D. Note also ad2

x(L) = x ` L a x.

We are going to show two results due to Konstrikin (see [1]) and
Benkart-Isaacs (see [2]) about ad-nilpotent elements in Lie algebras.

Theorem 30 (Konstrikin) Let g be a Lie algebra and let a be a nonzero
element in g such that adm

a = 0, for m ≥ 4. If g is n-torsion free for all
n ≤ m, then “

ad
adm−1

a (c)

”m−1

= 0 , for all c ∈ g.

Therefore g contains a nonzero Jordan element.

Theorem 31 Any nonzero finite dimensional Lie algebra over an alge-
braically closed field of an arbitrary characteristic necessarily contains a
nonzero ad-nilpotent element and therefore a nonzero Jordan element.

In the next part of this section, we are going to show the results about
Jordan elements in Leibniz algebras. We begin with the following technical
lemma.

Lemma 32 Let L be a Leibniz algebra. Then for all positive integers n
we have

ADn
X(Y ) = adXn(y) , for all x, y ∈ L , (15)

where ADX : ad(L) → ad(L), Y 7→ [X, Y ] for all X, Y ∈ ad(L), is the
adjoint map over ad(L).

Proof. If n = 1, for (14) we have

ADX(Y ) = [X, Y ] = ad[y,x] = adadx(y) = adX(y).

We suppose that the property is true for n = k, this is

ADk
X(Y ) = adXk(y) , for all x, y ∈ L.

Because Xk+1 = X(Xk(y)) = [Xk(y), x], then

ADk+1
X (Y ) = ADX(ADk

X(Y )) = ADX(adXk(y))

= [X, adXk(y)] = [adx, adXk(y)]

= ad[Xk(y),x] = adXk+1(y)

and the result is true for n = k + 1.
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Definition 33 A Leibniz algebra L is n-torsion free if, for x ∈ L, nx =
0 implies x = 0.

Theorem 34 Let L be a Leibniz algebra and let x be a nonzero ad-
nilpotent element of an index m > 3 in L. If L is n-torsion free for
all n ≤ m, then there is a nonzero Jordan element in L.

Proof. We have that Xm(y) = 0, for all y ∈ L, where X = adx and
x 6= 0. The last lemma implies that

ADm
X (Y ) = adXm(y) = 0 , ∀Y ∈ ad(L).

Then X is an ad-nilpotent element in the Lie algebra ad(L) with an ad-
nilpotent index at most m. If X = 0 the result is true, then we suppose
that X 6= 0. If n ≤ m and nX = 0 then nX(y) = 0, for all y ∈ L. This
implies that X(y) = 0 for all y ∈ L, because L is n-torsion free, then
X = 0 and therefore the Lie algebra ad(L) is n-torsion free for all n ≤ m.
Let k be the ad-nilpotent index of X. We have two possibilities for k:
k ≤ 3 or k > 3.

If k > 3 we have, by the Kostrikin’s theorem, that there is a nonzero
Jordan element Z in ad(L). Then there is a nonzero element in L such
that Z = adz. If k ≤ 3 we take Z = X. Then ADl

Z(Y ) = 0, for all
Y ∈ ad(L), when 1 ≤ l ≤ 3. Here it is equivalent to have adZl(y) = 0, for
all y ∈ L and implies

0 = adZl(y)(w) = [w, Zl(y)] , ∀y, w ∈ L (16)

There are two possibilities for Zl:

1. If Zl = 0, in this case we have proved the theorem.

2. If Zl 6= 0, then there is a nonzero element u ∈ L such that Zl(u) 6= 0
and for (16) we have that adZl(u)(w) = 0, for all w ∈ L. Therefore

Zl(u) is a nonzero Jordan element in L.

This proves the theorem.

Theorem 35 Let L be a nonzero finite dimensional Leibniz algebra over
an algebraically closed field of an arbitrary characteristic. Then L contains
a nonzero ad-nilpotent element and therefore a nonzero Jordan element.

Proof. ad(L) is a finite dimensional Lie algebra over an algebraically
closed field, since it is defined over the same field as L and it is a Lie
subalgebra of the finite dimensional Lie algebra gl(L). If [x, y] = 0, for all
x, y ∈ L, then all elements nonzero in L are ad-nilpotent of index 1 and
therefore the theorem is true. If there is a nonzero element x ∈ L such
that [x, y] 6= 0 for some y ∈ L, we have that X is a nonzero element in the
Lie algebra ad(L), then ad(L) satisfies the hypothesis of Benkart-Issacs’s
theorem and therefore there is a nonzero ad-nilpotent element Z in ad(L).
Hence, there is a nonzero element z ∈ L such that Z = adz.

Let m be the ad-nilpotent index of Z, this is ADm
Z = 0 and ADm−1

Z 6=
0. For all y ∈ L, we have

adZm(y) = ADm
Z (Y ) = 0
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and this implies that

adZm(y)(w) = [w, Zm(y)] = 0 , ∀y, w ∈ L.

If Zm = 0, then the theorem is true. Suppose that Zm 6= 0. There is a
nonzero element u ∈ L such that Zm(u) 6= 0 and therefore

adZm(u)(w) = [w, Zm(u)] = 0 , ∀w ∈ L.

This is equivalent to adZm(u) = 0, with Zm(u) 6= 0.

Now, we are going to show that it is possible to obtain a quasi-Jordan
algebra from any Jordan element in a Leibniz algebra. Throughout this
section we will be dealing with Leibniz algebras over a field K containing
1/6 (there is K containing the elements 1/2 and 1/3). In particular, we
have that L is 2 and 3-torsion free. First, we will show the following
lemma.

Lemma 36 Let x be a Jordan element of a Leibniz algebra L. For any
a, b ∈ L and α ∈ K, we have

1. X2AX = XAX2

2. X2AX2 = 0

3. X2A2XAX2 = X2AXA2X2

4. [X2(a), X(b)] = −[X(a), X2(b)]

5. ad2
x([a, [b, x]]) = [X(a), X2(b)]

6. X2ad[a,X2(b)] = ad[X2(a),b]X
2

7. ad2
X2(a) = X2A2X2

8. αx, ad2
x(a) are Jordan elements in L,

where A = ada

Proof.

1. Because X3(a) = 0, then adX3(a) = 0. For (15), we have

0 = adX3(a) = AD3
X(A)

= [X, [X, [X, A]]]
= X3A− 3X2AX + 3XAX2 −AX3

= 3(XAX2 −X2AX),

which proves 1, since L is 3-torsion free.

2. From 1 we have that X2AX = XAX2. Then multiplying on the
right side by X we obtain 2.

3. By 2 we have

0 = X2([[[X, A], A], A])X2

= X2(XA3 − 3AXA2 + 3A2XA−A3X)X2

= 3(X2A2XAX2 −X2AXA2X2)
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4. From X3 = 0, using the Leibniz identity we get

0 = X3([a, b]) = [[[[a, b], x], x], x]
= [[[[a, x], b], x], x] + [[[a, [b, x]], x], x]
= [[[[a, x], x], b], x] + 2[[[a, x], [b, x]], x] + [[a, [[b, x], x]], x]

The Leibniz identity implies that

0 = 3([[[a, x], x], [b, x]] + [[a, x], [[b, x], x]])
= 3([X2(a), X(b)] + [X(a), X2(b)]).

Then [X2(a), X(b)] = −[X(a), X2(b)], because L is 3-torsion free.

5. From the Leibniz identity and 4, we have

ad2
x([a, [b, x]]) = [[[a, [b, x]], x], x]

= [[[a, x], [b, x]], x] + [[a, [[b, x], x]], x]
= [[[a, x], x], [b, x]] + 2[[a, x], [[b, x], x]]

from the definition of X we obtain

ad2
x([a, [b, x]]) = [X2(a), X(b)] + 2[X(a), X2(b)]

= −[X(a), X2(b)] + 2[X(a), X2(b)]
= [X(a), X2(b)].

6. Since ad[a,X2(b)] = [[X, [X, B]], A], we get

X2ad[a,X2(b)] = X2
`
(X2B − 2XBX + BX2)A−A(X2B − 2XBX + BX2)

´
= 2X2AXBX −X2ABX2

= 2XAXBX2 −X2ABX2

From the identities (BX2A−2BXAX +BAX2−AX2B)X2 = 0, X3 = 0
and 2, it follows that

X2ad[a,X2(b)] =
`
B(X2A− 2XAX + AX2)− (X2A− 2XAX + AX2)B

´
X2

= [B, [X, [X, A]]]X2

= ad[X2(a),b]X
2.

7. From (15) and 2, we have

ad2
X2(a) = (ad[[a,x],x])(ad[[a,x],x])

= ([X, [X, A]]) ([X, [X, A]])
= (X2A− 2XAX + AX2)(X2A− 2XAX + AX2)
= X2A2X2.

8. ad3
αx = α3ad3

x shows that αx is a Jordan element. Set w := ad2
x(a).

Using 2 and 7 we get

ad3
w = ad[[a,x],x]ad2

ad2
x(a) = [X, [X, A]]X2A2X2

= (X2A− 2XAX + AX2)X2A2X2

= 0 ,

so w is a Jordan element.
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Theorem 37 Let L be a Leibniz algebra and let x be a Jordan element
of L. Then L with the new product defined by

a / b :=
1

2
[a, [b, x]]

is a nonassociative algebra, denoted by L(x), such that

KerL(x) := {a ∈ L|X2(a) = 0}

is an ideal of L(x).

Proof. Let a ∈ KerL(x) and let b ∈ L. Using 5 and 6 in the previous
lemma, we get

X2([b, [a, x]]) = [X(b), X2(a)] = 0

X2([a, [b, x]]) = [X(a), X2(b)] = −[X2(a), X(b)] = 0 ,

since X2(a) = 0. Therefore a / b and b / a are in KerL(x).

Theorem 38 Let L be a Leibniz algebra and let x be a Jordan element
of L. Then Lx := L(x)/KerL(x) is a quasi-Jordan algebra. Moreover, Lx

is a noncommutative algebra in general.

Proof. Let a, b ∈ L and a denotes the coset of a with respect to
kerL(x). Because

ad2
x([a, [b, x]]− [b, [a, x]]) = [X(a), X2(b)] + [X2(b), X(a)]

and L is not anti-symmetric in general, then ad2
x([a, [b, x]]− [b, [a, x]]) 6= 0

in general. This implies that a / b 6= b / a in general. We have

c / (b / a) =
1

4
[c, [[b, [a, x]], x]] and c / (a / b) =

1

4
[c, [[a, [b, x]], x]].

Since

ad2
x ([c, [[b, [a, x]], x]]) = [X(c), X2([b, [a, x]])]

= [X(c), X2([[b, a], x]− [[b, x], a])]
= [X(c), X2(−[[b, x], a])],

by 4 in lemma 36 we have

ad2
x ([c, [[b, [a, x]], x]]) = −[X2(c), X(−[[b, x], a])]

= −[X2(c), [−[[b, x], a], x]]
= −[X2(c), [[a, [b, x]], x]]
= −[X2(c), X([a, [b, x]])].

Using 4 from the lemma 36 we obtain

ad2
x ([c, [[b, [a, x]], x]]) = [X(c), X2([a, [b, x]])]

= ad2
x([c, [[a, [b, x]], x]]) .

Then c / (b / a)− c / (a / b) ∈ KerL(x), this is c / (a / b) = c / (b / a). We
will verify the Jordan identity. Let a, b ∈ L and put w := [[a, [a, x]], x].
Then

8(b / a2) / a = [[b, [[a, [a, x]], x]], [a, x]] = [[b, w], [a, x]]
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and
8(b / a) / a2 = [[b, [a, x]], [[a, [a, x]], x]] = [[b, [a, x], w]

= [[b, w], [a, x]] + [b, [[a, x], w]]

= 8(b / a2) / a + [b, [[a, x], w]]

Thus we only need to verify that [b, [[a, x], w]] is in KerL(x). In effect,
because [b, [[a, x], w]] = ad[[a,x],w](b) then

ad2
xad[[a,x],w] = X2[W, [X, A]]

= X2WXA−X2WAX + X2AXW,

since X3 = 0, and

adw = W = X2A2 − 2XAXA + 2AXAX −A2X2.

From
X2WAX = 0

−X2WAX = −2X2AXAXAX + X2A2X2AX
X2AXW = 2X2AXAXAX −X2AXA2X2,

we have ad2
xad[[a,x],w] = 0, i.e. X2([b, [[a, x], w]]) = 0, for all a, b ∈ L.

Definition 39 For any Jordan element x of a Leibniz algebra L, the
quasi-Jordan algebra Lx we have just introduced will be called the quasi-
Jordan algebra of L at x.

Remark 40 If L is a Lie algebra then Lx is a Jordan algebra, since
[X(a), X2(b)] = −[X2(b), X(a)]. The last theorem generalizes the result
due to Fernández, Garćıa and Gómez for Lie algebras to Leibniz algebras
(see [6], Theorem 2.4).

Let L be a Leibniz algebra and let Lann be the subspace of L spanned
by elements of the form [x, x], x ∈ L. Since Lann is a two-side ideal of L,
then if L is a Leibniz algebra that is non-Lie algebra we have that Lann

is a nonzero proper two-side ideal of L. In particular, Lann = {0} if and
only if L is a Lie algebra.

This imply that Leibniz algebras cannot be nondegenerate in the clas-
sical sense, because all elements in Lann are absolute zero divisors of L.
We consider the following subspaces direct sum:

L = Lann ⊕ Lie(L), (LD)

where the subspace Lie(L) of L is the complement of the subspace Lann.
We write the elements x ∈ L in the form x = xa + xL, where xa ∈ Lann

and xL ∈ Lie(L).
Therefore we introduce the following generalization of the definition

of nondegenerated Lie algebra.

Definition 41 An element x in a Leibniz algebra L is called an absolute
zero divisor of L if ad2

x = 0. A Leibniz algebra L is said to be nonde-
generate if it has no nonzero absolute zero divisor in Lie(L) (if x 6= 0,
then ad2

x 6= 0, for all x ∈ Lie(L)). This is, if ad2
x = 0, for x ∈ Lie(L),

then x = 0.
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It should be noted that the above definition agrees with the definition
of nondegenerated Lie algebra, since Lie(L) = L (Lann = {0}), in this
case.

Remark 42 Let L be a Leibniz algebra and let x a Jordan element in L.
From the definition of Lann and Lie(L), we have

1. [y, z] = [y, zL], for all y, z ∈ L.

2. [yL, yL] = 0, for all y ∈ L.

3. xL is a Jordan element in L.

4. If L is a nondegenerate Leibniz algebra, then Lann = Zr(L).

The following lemma shows that the identity [[yL, xL], xL] = 2xL im-
plys the existence of a right unit in Lx.

Lemma 43 Let L be a Leibniz algebra and let x be a Jordan element in
L. If y is an element in L that satisfys the identity [[yL, xL], xL] = 2xL,
then y is a right unit in Lx. Moreover, z + y is a right unit in Lx, for all
z ∈ Zr(L).

Proof. For all a ∈ L, we have

X2([a, [y, x]]) = [X(a), X2(y)] = [[a, x], [[y, x], x]]
= [[a, xL], [[yL, xL], xL]] = 2[[a, xL], xL]
= 2[[a, x], x] = 2X2(a),

since [u, v] = [u, vL] and [a, [u, v]] = [a,−[v, u]], for all u, v ∈ L.
Therefore X2([a, [y, x]] − 2a) = 0 and this is equivalent to a / y = a,

for all a ∈ Lx.
The identity [a, z] = 0, for all z ∈ Zr(L), implies that z + y is a right

unit in Lx, for all z ∈ Zr(L).
The following lemma shows that the existence of the right unit is

equivalent to the identity ([[y, x], x])L = 2xL, for some y ∈ L and for x a
Jordan element in a nondegenerate Leibniz algebra L.

Lemma 44 Let L be a nondegenerate Leibniz algebra and let x be a Jor-
dan element of L. Then y is a right unit for the quasi-Jordan algebra Lx

if and only if wL = 2xL, where w = [[y, x], x].

Proof. Suppose that y ∈ L which [[y, x], x] = 2x, then for all a ∈ L

X2([a, [y, x]]) = [X(a), X2(y)] = [[a, x], [[y, x], x]]
= [[a, x], w] = [[a, x], wL] = 2[[a, x], xL]
= 2[[a, x], x] = 2X2(a).

Therefore X2([a, [y, x]] − 2a) = 0 and this is equivalent to a / y = a,
for all a ∈ Lx. Suppose, conversely, that y is a right unit for Lx. Put
z := X2(y)− 2x. For all a ∈ L,

[[a, z], z] = [[a, X2(y)], X2(y)]− 2[[a, x], X2(y)]− 2X2([a, [y, x]]− 2a)
= [[a, X2(y)]− 2[a, x], X2(y)]
= [[a, X2(y)− 2x], X2(y)]
= [[a, z], z] + 2[[a, z], x] ,
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Then [[a, z], x] = 0, for all a ∈ L, since L is 2-torsion free. As [z, x] =
−2[x, x] we have

0 = [[a, z], x] = [[a, x], z] + [a, [z, x]]
= [[a, x], z]− 2[a, [x, x]]
= [[a, x], z]

Finally, the Leibniz identity and the identities [[a, z], x] = 0 = [[a, x], z]
imply

[[a, z], z] = [[a, X2(y)], z]− 2[[a, x], z]
= [[a, [[y, x], x], z]
= [[[a, [y, x]], x], z]− [[[a, x], [y, x]], z]
= −[[[a, x], z], [y, x]]− [[a, x], [[y, x], z]]
= 0

Since 0 = [[a, z], z] = [[a, zL], zL] and zL = wL − 2xL, therefore zL = 0,
because L is nondegenerate. Then wL = 2xL.

Remark 45 The previous lemmas shows that if there is an right unit y
in Lx, then Zr(L) ⊂ Lann

x and Zr(L) + yL ⊂ Ur(Lx).

We are going to define a special operator over quasi-Jordan algebras.
This operator agrees with the U -operator over Jordan algebras.

Definition 46 Let = be a quasi-Jordan algebra and let Ra be a right
multiplicative map by a over = (Ra : = → =, b 7→ b / a). For all a ∈ = we
define the U-operator Ua : = → = by

Ua = 2R2
a −Ra2 , where a2 = a / a. (17)

We will show a special formula for the U -operator over Lx.

Lemma 47 Let x be a Jordan element of a Leibniz algebra L. Then the
quasi-Jordan algebra Lx of L at x has a U-operator given by

Uab =
1

4
A2X2(b), for all a, b ∈ Lx (18)

Proof. For all c ∈ L we have [c, x] ∈ KerL(x), since X2([c, x]) =
X3(c) = 0. Then [c, x] = 0 and

A2X2(b) = [[[[b, x], x], a], a]

= [[[[b, x], a], x], a] + [[[b, x], [x, a]], a]

= [[[[b, x], a], a], x] + 2[[[b, x], a], [x, a]] + [[b, x], [[x, a], a]]

= 2[[[b, a], x], [x, a]] + 2[[b, [x, a]], [x, a]] + [[b, [[x, a], a]], x]

+[b, [x, [[x, a], a]]]

= 2[[[b, a], x], [x, a]] + 2[[b, [a, x]], [a, x]]− [b, [[a, [a, x]], x]]

= 4
`
2(b / a)a− b / a2

´
= 4Uab ,

since [[[b, a], x], [x, a]] = 0, because

X2([X([b, a]), [x, a]]) = −X2([X([b, a]), [a, x]])
= −[X(X([b, a]), X2(a)]
= [X2(X([b, a]), X(a)]
= [X3([b, a]), X(a)]
= 0 ,
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for all b, a ∈ L.
Let = be a quasi-Jordan algebra and let =ann be the subspace of =

spanned by elements of the form x / y − y / x, x, y ∈ =. Since =ann is a
two-side ideal of =, then if = is a quasi-Jordan algebra that is non-Jordan
algebra we have that =ann is a nonzero proper two-side ideal of =. In
particular, =ann = {0} if and only if = is a Jordan algebra.

This imply that quasi-Jordan algebras cannot be nondegenerate in the
classical sense, because all elements in =ann are absolute zero divisors of
=. We consider the following subspaces direct sum:

= = =ann ⊕ Jor(=), (QJD)

where the subspace Jor(=) of = is the complement of the subspace =ann.
We write the elements a ∈ = in the form a = aa + aJ , were aa ∈ =ann

and aJ ∈ Jor(=).
Therefore we introduce the following generalization of the definition

of nondegenerated Jordan algebra.

Definition 48 Let = be a quasi-Jordan algebra. An element a in = is
called an absolute zero divisor of = if Ua = 0. A quasi-Jordan algebra
= is said to be nondegenerate if it has no nonzero absolute zero divisors
in Jor(=) (if a 6= 0, then Ua 6= 0, for all a ∈ Jor(=)). This is, if Ua = 0,
for a ∈ Jor(=), then a = 0.

It should be noted that the above definition agrees with the definition
of nondegenerated Jordan algebra, since Jor(=) = = (=ann = {0}), in
this case.

Remark 49 If = is a nondegenerate quasi-Jordan algebra, then =ann =
Zr(=).

Theorem 50 Let L be a nondegenerate Leibniz algebra and let x be a
Jordan element of L such that xL 6= 0. Then Lx is a nondegenerate
quasi-Jordan algebra.

Proof. Since adx = adxL , we can assume that x = xL. Let a be an
element in Jor(Lx). If Uab = 0 for every b ∈ Lx, then 0 = ad2

xad2
aad2

x(b) =
X2A2X2(b) = ad2

X2(a)(b). Since [u, v] = [u, vL], for all u, v ∈ L, we have

that 0 = ad2
X2(a)(b) = ad2

(X2(a))L
(b) which implies that (ad2

x(a))L = 0,

since L is nondegenerate. Therefore ad2
x(a) ∈ Lann

x .
We suppose that a 6= 0, then we have that there is a nonzero ele-

ment c ∈ Lx such that c / a 6= 0, since a ∈ Jor(Lx). This implies that
[c, [a, x]] /∈ KerL(x) and this is equivalent to X2([c, [a, x]]) 6= 0. Be-
cause X2([c, [a, x]]) = [X(c), X2(a)], then [X(c), X2(a)] 6= 0 and therefore
ad2

x(a) /∈ Lann. It contradicts that ad2
x(a) ∈ Lann

x , then a = 0.
Now, we will characterize the Jordan elements in Leibniz algebras by

inner ideals. First, we define inner ideals in Leibniz algebras.

Definition 51 Let L be a Leibniz algebra. A vector subspace B of L is
an inner ideal if [[L, B], B] ⊆ B. Clearly, any ideal I of L is an inner
ideal. Moreover subideals of L are also inner ideals.

An abelian inner ideal is an inner ideal B which is also an abelian
subalgebra, this is [B, B] = 0.
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According to the last definition, we have the following characterization
for Jordan elements in Leibniz algebras.

Lemma 52 Let L be a Leibniz algebra and let x ∈ L. The following
conditions are equivalent:

1. ad3
x = 0

2. x ∈ B, for B an abelian inner ideal.

Proof. We suppose that ad3
x = 0 (X3(L) = 0). First, we are going

to show that X2(L) is an abelian inner ideal of L. It suffices to show
Y Z(L) ⊆ X2(L), for Y = ady and Z = adz, where y = X2(v) and
z = X2(w). Then, for Lemma 36, parts 1 and 2, we have

Y Z = [X, [X, V ]][X, [X, W ]]
= (X2V − 2XV X + V X2)(X2W − 2XWX + WX2)
= −2X2V XWX + X2V WX2 + 4XV X2WX − 2XV XWX2

= X2V WX2

This implies that Y Z(L) ⊆ X2(L). On the other hand

[y, z] = Z(y) = (X2W − 2XWX + WX2)(X2(v)) = 0

therefore X2(L) is an abelian inner ideal of L. Then Fx + X2(L) is an
abelian inner ideal of L, where F is the field over which L is defined.

Now, we suppose that x ∈ B, for B an abelian inner ideal of L. Then
ad3

x(L) = [[[L, x], x], x] ⊆ [B, x] = 0.
Let L be a Leibniz algebra. An element x ∈ L is called von Neumann

regular if X3 = 0 and x ∈ X2(L). We finish with the following lemma.

Lemma 53 Let x be a Jordan element of L.

1. If I is an ideal of L and x ∈ I is von Newmann regular, then both
quasi-Jordan algebras Ix and Lx agree.

2. If L = I ⊕ J is a direct sum of ideals and x = i + j with respect to
this decomposition, then Lx

∼= Ii × Jj.

3. For any inner ideal B of L, Bx := (B/kerL(x)∩B, /) is a subalgebra
of Lx.

Proof. The proofs of 2 and 3 are straightforward. Now to prove 1
it is sufficient to show that any coset a in Lx is equal to a coset b in
Ix. Write x = X2(y) for some y ∈ L. Then, by Lemma 36 (part 7),
X2 = ad2

X2(y) = X2Y 2X2 and hence, for any a ∈ L, X2(a) = X2(b),

where b = Y 2X2(a) ∈ I.
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